混凝土結構物的裂縫可分為微觀裂縫和宏觀裂縫。微觀裂縫是指那些肉眼看不見的裂縫,主要有三種,一是骨料與水泥石粘合面上的裂縫,稱為粘著裂縫;二是水泥石中自身的裂縫,稱為水泥石裂縫;三是骨料本身的裂縫,稱為骨料裂縫。微觀裂縫在混凝土結構中的分布是不規則、不貫通的。反之,肉眼看得見的裂縫稱為宏觀裂縫,這類裂縫的范圍一般不小于0.05mm。宏觀裂縫是微觀裂縫擴展而來的。因此在混凝土結構中裂縫是絕對存在的,只是應將其控制在符合規范要求范圍內,以不致發展到有害裂縫。
10-7-1 混凝土裂縫產生的主要原因混凝土結構的宏觀裂縫產生的原因主要有三種,一是由外荷載引起的,這是發生最為普遍的一種情況,即按常規計算的主要應力引起的;二是結構次應力引起的裂縫,這是由于結構的實際工作狀態與計算假設模型的差異引起的;三是變形應力引起的裂縫,這是由溫度、收縮、膨脹、不均勻沉降等因素引起結構變形,當變形受到約束時便產生應力,當此應力超過混凝土抗拉強度時就產生裂縫。
當混凝土結構物產生變形時,在結構的內部、結構與結構之間,都會受到相互影響、相互制約,這種現象稱為約束。當混凝土結構截面較厚時,其內部溫度和濕度分布不均勻,引起內部不同部位的變形相互約束,這樣的約束稱之為內約束;當一個結構物的變形受到其他結構的阻礙所受到的約束稱為外約束。外約束又可分為自由體、全約束和彈性約束。建筑工程中的大體積混凝土結構所承受的變形,主要是因溫差和收縮而產生的。
建筑工程中的大體積混凝土結構中,由于結構截面大,水泥用量多,水泥水化所釋放的水化熱會產生較大的溫度變化和收縮作用,由此形成的溫度收縮應力是導致鋼筋混凝土產生裂縫的主要原因。這種裂縫有表面裂縫和貫通裂縫兩種。表面裂縫是由于混凝土表面和內部的散熱條件不同,溫度外低內高,形成了溫度梯度,使混凝土內部產生壓應力,表面產生拉應力,表面的拉應力超過混凝土抗拉強度而引起的。貫通裂縫是由于大體積混凝土在強度發展到一定程度,混凝土逐漸降溫,這個降溫差引起的變形加上混凝土失水引起的體積收縮變形,受到地基和其他結構邊界條件的約束時引起的拉應力,超過混凝土抗拉強度時所可能產生的貫通整個截面的裂縫。這兩種裂縫不同程度上,都屬有害裂縫。
高強度的混凝土早期收縮較大,這是由于高強混凝土中以30%~60%礦物細摻合料替代水泥,高效減水劑摻量為膠凝材料總量的1%~2%,水膠比為0.25~0.40,改善了混凝土的微觀結構,給高強混凝土帶來許多優良特性,但其負面效應最突出的是混凝土收縮裂縫幾率增多。高強混凝土的收縮,主要是干燥收縮、溫度收縮、塑性收縮、化學收縮和自收縮?;炷脸醅F裂紋的時間可以作為判斷裂紋原因的參考:塑性收縮裂紋大約在澆筑后幾小時到十幾小時出現;溫度收縮裂紋大約在澆筑后2到10d出現;自收縮主要發生在混凝土凝結硬化后的幾天到幾十天;干燥收縮裂紋出現在接近1年齡期內。
干燥收縮:當混凝土在不飽和空氣中失去內部毛細孔和凝膠孔的吸附水時,就會產生干縮,高性能混凝土的孔隙率比普通混凝土低,故干縮率也低。
塑性收縮:塑性收縮發生在混凝土硬化前的塑性階段。高強混凝土的水膠比低,自由水分少,礦物細摻合料對水有更高的敏感性,高強混凝土基本不泌水,表面失水更快,所以高強混凝土塑性收縮比普通混凝土更容易產生。
自收縮:密閉的混凝土內部相對濕度隨水泥水化的進展而降低,稱為自干燥。自干燥造成毛細孔中的水分不飽和而產生負壓,因而引起混凝土的自收縮。高強混凝土由于水膠比低,早期強度較快的發展,會使自由水消耗快,致使孔體系中相對濕度低于80%,而高強混凝土結構較密實,外界水很難滲入補充,導致混凝土產生自收縮。高強混凝土的總收縮中,干縮和自收縮幾乎相等,水膠比越低,自收縮所占比例越大。與普通混凝土完全不同,普通混凝土以干縮為主,而高強混凝土以自收縮為主。
溫度收縮:對于強度要求較高的混凝土,水泥用量相對較多,水化熱大,溫升速率也較大,一般可達35~40℃,加上初始溫度可使最高溫度超過70~80℃。一般混凝土的熱膨脹系數為10×10-6/℃,當溫度下降20~25℃時造成的冷縮量為2~2.5×10-4,而混凝土的極限拉伸值只有1~1.5×10-4,因而冷縮常引起混凝土開裂。
化學收縮:水泥水化后,固相體積增加,但水泥-水體系的絕對體積則減小,形成許多毛細孔縫,高強混凝土水膠比小,外摻礦物細摻合料,水化程度受到制約,故高強混凝土的化學收縮量小于普通混凝土。
當混凝土發生收縮并受到外部或內部約束時,就會產生拉應力,并有可能引起開裂。對于高強混凝土雖然有較高的抗拉強度,可是彈性模量也高,在相同收縮變形下,會引起較高的拉應力,而由于高強混凝土的徐變能力低,應力松弛量較小,所以抗裂性能差。
10-7-2 大體積混凝土裂縫控制的計算10-7-2-1 大體積混凝土溫度計算公式1.最大絕熱溫升(二式取其一)
(1)Th=(mc+k·F)Q/c·ρ
(2)Th=mc·Q/c·ρ(1-e-mt) (10-43)
式中 Th——混凝土最大絕熱溫升(℃);
mc——混凝土中水泥(包括膨脹劑)用量(kg/m3);
F——混凝土活性摻合料用量(kg/m3);
K——摻合料折減系數。粉煤灰取0.25~0.30;
Q——水泥28d水化熱(kJ/kg)查表10-81;
不同品種、強度等級水泥的水化熱 表10-81
水泥品種
水泥強度等級
水化熱Q(kJ/kg)
3d
7d
28d
硅酸鹽水泥
42.5
314
354
375
32.5
250
271
334
礦渣水泥
32.5
180
256
334
c——混凝土比熱、取0.97[kJ/(kg·K)];
ρ——混凝土密度、取2400(kg/m3);
e——為常數,取2.718;
t——混凝土的齡期(d);
m——系數、隨澆筑溫度改變。查表10-82。
系數m 表10-82
澆筑溫度(℃)
5
10
15
20
25
30
m(l/d)
0.295
0.318
0.340
0.362
0.384
0.406
2.混凝土中心計算溫度
T1(t)=Tj+Th·ξ(t)
式中 T1(t)——t齡期混凝土中心計算溫度(℃);
Tj——混凝土澆筑溫度(℃);
ξ(t)——t齡期降溫系數、查表10-83。
降溫系數ξ 表10-83
澆筑層厚度
(m)
齡期t(d)
3
6
9
12
15
18
21
24
27
30
1.0
0.36
0.29
0.17
0.09
0.05
0.03
0.01
1.25
0.42
0.31
0.19
0.11
0.07
0.04
0.03
1.50
0.49
0.46
0.38
0.29
0.21
0.15
0.12
0.08
0.05
0.04
2.50
0.65
0.62
0.57
0.48
0.38
0.29
0.23
0.19
0.16
0.15
3.00
0.68
0.67
0.63
0.57
0.45
0.36
0.30
0.25
0.21
0.19
4.00
0.74
0.73
0.72
0.65
0.55
0.46
0.37
0.30
0.25
0.24
3.混凝土表層(表面下50~100mm處)溫度
1)保溫材料厚度(或蓄水養護深度)
δ=0.5h·λx(T2-Tq)Kb/λ(Tmax-T2) (10-45)
標簽: 裂縫