混凝土裂縫的形成和控制

華金盛保溫材料廠家
10-7 混凝土裂縫的形成和控制

混凝土結構物的裂縫可分為微觀裂縫和宏觀裂縫。微觀裂縫是指那些肉眼看不見的裂縫,主要有三種,一是骨料與水泥石粘合面上的裂縫,稱為粘著裂縫;二是水泥石中自身的裂縫,稱為水泥石裂縫;三是骨料本身的裂縫,稱為骨料裂縫。微觀裂縫在混凝土結構中的分布是不規則、不貫通的。反之,肉眼看得見的裂縫稱為宏觀裂縫,這類裂縫的范圍一般不小于0.05mm。宏觀裂縫是微觀裂縫擴展而來的。因此在混凝土結構中裂縫是絕對存在的,只是應將其控制在符合規范要求范圍內,以不致發展到有害裂縫。

10-7-1 混凝土裂縫產生的主要原因

混凝土結構的宏觀裂縫產生的原因主要有三種,一是由外荷載引起的,這是發生最為普遍的一種情況,即按常規計算的主要應力引起的;二是結構次應力引起的裂縫,這是由于結構的實際工作狀態與計算假設模型的差異引起的;三是變形應力引起的裂縫,這是由溫度、收縮、膨脹、不均勻沉降等因素引起結構變形,當變形受到約束時便產生應力,當此應力超過混凝土抗拉強度時就產生裂縫。

當混凝土結構物產生變形時,在結構的內部、結構與結構之間,都會受到相互影響、相互制約,這種現象稱為約束。當混凝土結構截面較厚時,其內部溫度和濕度分布不均勻,引起內部不同部位的變形相互約束,這樣的約束稱之為內約束;當一個結構物的變形受到其他結構的阻礙所受到的約束稱為外約束。外約束又可分為自由體、全約束和彈性約束。建筑工程中的大體積混凝土結構所承受的變形,主要是因溫差和收縮而產生的。

建筑工程中的大體積混凝土結構中,由于結構截面大,水泥用量多,水泥水化所釋放的水化熱會產生較大的溫度變化和收縮作用,由此形成的溫度收縮應力是導致鋼筋混凝土產生裂縫的主要原因。這種裂縫有表面裂縫和貫通裂縫兩種。表面裂縫是由于混凝土表面和內部的散熱條件不同,溫度外低內高,形成了溫度梯度,使混凝土內部產生壓應力,表面產生拉應力,表面的拉應力超過混凝土抗拉強度而引起的。貫通裂縫是由于大體積混凝土在強度發展到一定程度,混凝土逐漸降溫,這個降溫差引起的變形加上混凝土失水引起的體積收縮變形,受到地基和其他結構邊界條件的約束時引起的拉應力,超過混凝土抗拉強度時所可能產生的貫通整個截面的裂縫。這兩種裂縫不同程度上,都屬有害裂縫。

高強度的混凝土早期收縮較大,這是由于高強混凝土中以30%~60%礦物細摻合料替代水泥,高效減水劑摻量為膠凝材料總量的1%~2%,水膠比為0.25~0.40,改善了混凝土的微觀結構,給高強混凝土帶來許多優良特性,但其負面效應最突出的是混凝土收縮裂縫幾率增多。高強混凝土的收縮,主要是干燥收縮、溫度收縮、塑性收縮、化學收縮和自收縮?;炷脸醅F裂紋的時間可以作為判斷裂紋原因的參考:塑性收縮裂紋大約在澆筑后幾小時到十幾小時出現;溫度收縮裂紋大約在澆筑后2到10d出現;自收縮主要發生在混凝土凝結硬化后的幾天到幾十天;干燥收縮裂紋出現在接近1年齡期內。

干燥收縮:當混凝土在不飽和空氣中失去內部毛細孔和凝膠孔的吸附水時,就會產生干縮,高性能混凝土的孔隙率比普通混凝土低,故干縮率也低。

塑性收縮:塑性收縮發生在混凝土硬化前的塑性階段。高強混凝土的水膠比低,自由水分少,礦物細摻合料對水有更高的敏感性,高強混凝土基本不泌水,表面失水更快,所以高強混凝土塑性收縮比普通混凝土更容易產生。

自收縮:密閉的混凝土內部相對濕度隨水泥水化的進展而降低,稱為自干燥。自干燥造成毛細孔中的水分不飽和而產生負壓,因而引起混凝土的自收縮。高強混凝土由于水膠比低,早期強度較快的發展,會使自由水消耗快,致使孔體系中相對濕度低于80%,而高強混凝土結構較密實,外界水很難滲入補充,導致混凝土產生自收縮。高強混凝土的總收縮中,干縮和自收縮幾乎相等,水膠比越低,自收縮所占比例越大。與普通混凝土完全不同,普通混凝土以干縮為主,而高強混凝土以自收縮為主。

溫度收縮:對于強度要求較高的混凝土,水泥用量相對較多,水化熱大,溫升速率也較大,一般可達35~40℃,加上初始溫度可使最高溫度超過70~80℃。一般混凝土的熱膨脹系數為10×10-6/℃,當溫度下降20~25℃時造成的冷縮量為2~2.5×10-4,而混凝土的極限拉伸值只有1~1.5×10-4,因而冷縮常引起混凝土開裂。

化學收縮:水泥水化后,固相體積增加,但水泥-水體系的絕對體積則減小,形成許多毛細孔縫,高強混凝土水膠比小,外摻礦物細摻合料,水化程度受到制約,故高強混凝土的化學收縮量小于普通混凝土。

當混凝土發生收縮并受到外部或內部約束時,就會產生拉應力,并有可能引起開裂。對于高強混凝土雖然有較高的抗拉強度,可是彈性模量也高,在相同收縮變形下,會引起較高的拉應力,而由于高強混凝土的徐變能力低,應力松弛量較小,所以抗裂性能差。

10-7-2 大體積混凝土裂縫控制的計算10-7-2-1 大體積混凝土溫度計算公式

1.最大絕熱溫升(二式取其一)

(1)Th=(mc+k·F)Q/c·ρ

(2)Th=mc·Q/c·ρ(1-e-mt) (10-43)

式中 Th——混凝土最大絕熱溫升(℃);

mc——混凝土中水泥(包括膨脹劑)用量(kg/m3);

F——混凝土活性摻合料用量(kg/m3);

K——摻合料折減系數。粉煤灰取0.25~0.30;

Q——水泥28d水化熱(kJ/kg)查表10-81;

不同品種、強度等級水泥的水化熱 表10-81

水泥品種

水泥強度等級

水化熱Q(kJ/kg)

3d

7d

28d

硅酸鹽水泥

42.5

314

354

375

32.5

250

271

334

礦渣水泥

32.5

180

256

334

c——混凝土比熱、取0.97[kJ/(kg·K)];

ρ——混凝土密度、取2400(kg/m3);

e——為常數,取2.718;

t——混凝土的齡期(d);

m——系數、隨澆筑溫度改變。查表10-82。

系數m 表10-82

澆筑溫度(℃)

5

10

15

20

25

30

m(l/d)

0.295

0.318

0.340

0.362

0.384

0.406

2.混凝土中心計算溫度

T1(t)=Tj+Th·ξ(t)

式中 T1(t)——t齡期混凝土中心計算溫度(℃);

Tj——混凝土澆筑溫度(℃);

ξ(t)——t齡期降溫系數、查表10-83。

降溫系數ξ 表10-83

澆筑層厚度

(m)

齡期t(d)

3

6

9

12

15

18

21

24

27

30

1.0

0.36

0.29

0.17

0.09

0.05

0.03

0.01

1.25

0.42

0.31

0.19

0.11

0.07

0.04

0.03

1.50

0.49

0.46

0.38

0.29

0.21

0.15

0.12

0.08

0.05

0.04

2.50

0.65

0.62

0.57

0.48

0.38

0.29

0.23

0.19

0.16

0.15

3.00

0.68

0.67

0.63

0.57

0.45

0.36

0.30

0.25

0.21

0.19

4.00

0.74

0.73

0.72

0.65

0.55

0.46

0.37

0.30

0.25

0.24

3.混凝土表層(表面下50~100mm處)溫度

1)保溫材料厚度(或蓄水養護深度)

δ=0.5h·λx(T2-Tq)Kb/λ(Tmax-T2) (10-45)

標簽: 裂縫

7777精品久久久大香线蕉,国产精品偷窥熟女精品视频,色噜噜狠狠一区二区三区,欧美性色欧美A在线在线播放
<蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <文本链> <文本链> <文本链> <文本链> <文本链> <文本链>